Minghui Li 1,2Renhong Gao 1,2Chuntao Li 3,4Jianglin Guan 3,4[ ... ]Ya Cheng 1,2,3,6,7,**
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
4 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
5 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
6 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
7 Hefei National Laboratory, Hefei 230088, China
We demonstrate single-mode microdisk lasers in the telecom band with ultralow thresholds on erbium-ytterbium co-doped thin-film lithium niobate (TFLN). The active microdisk was fabricated with high-Q factors by photolithography-assisted chemomechanical etching. Thanks to the erbium-ytterbium co-doping providing high optical gain, the ultralow loss nanostructuring, and the excitation of high-Q coherent polygon modes, which suppresses multimode lasing and allows high spatial mode overlap between pump and lasing modes, single-mode laser emission operating at 1530 nm wavelength was observed with an ultralow threshold, under a 980-nm-band optical pump. The threshold was measured as low as 1 µW, which is one order of magnitude smaller than the best results previously reported in single-mode active TFLN microlasers. The conversion efficiency reaches 4.06 × 10-3, which is also the highest value reported in single-mode active TFLN microlasers.
lithium niobate microcavities microdisk lasers 
Chinese Optics Letters
2024, 22(4): 041301
Author Affiliations
Abstract
1 East China Normal University, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
2 Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing, China
3 China Jiliang University, College of Optical and Electronic Technology, Hangzhou, China
4 Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
5 Chinese Academy of Sciences (CAS), Shanghai Institute of Optics and Fine Mechanics (SIOM), State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai, China
Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication, computation, metrology, and sensing. The integration of subwavelength metasurfaces and optical waveguides offers a promising approach to manipulate light across multiple degrees of freedom at high speed in compact photonic integrated circuit (PIC) devices. Here, we demonstrate a gigahertz-rate-switchable wavefront shaping by integrating metasurface, lithium niobate on insulator photonic waveguides, and electrodes within a PIC device. As proofs of concept, we showcase the generation of a focus beam with reconfigurable arbitrary polarizations, switchable focusing with lateral focal positions and focal length, orbital angular momentum light beams as well as Bessel beams. Our measurements indicate modulation speeds of up to the gigahertz rate. This integrated platform offers a versatile and efficient means of controlling the light field at high speed within a compact system, paving the way for potential applications in optical communication, computation, sensing, and imaging.
metasurface photonic integrated circuit lithium niobate on insulator high-speed modulation 
Advanced Photonics
2024, 6(1): 016005
程亚 1,2,*
作者单位
摘要
1 华东师范大学物理与电子科学学院,上海 200241
2 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800

近年来,薄膜铌酸锂光子集成技术发展极为迅速,其背后有着深刻的物理、材料、技术原因。单晶薄膜铌酸锂为解决光子集成芯片领域长期存在的低传输损耗、高密度集成以及低调制功耗需求提供了至今为止综合性能最优的解决方案。面向未来的新一代高速光电器件与超大规模光子集成芯片应用,本文回顾了薄膜铌酸锂光子技术的起源及其近期的快速发展,讨论了若干薄膜铌酸锂光子结构的加工技术,并展示了一系列当前性能最优的薄膜铌酸锂光子集成器件与系统,包括超低损耗可调光波导延时线、超高速光调制器、高效率量子光源,以及高功率片上放大器与片上激光器。这些器件以其体积小、质量轻、功耗低、性能好的综合优势,将对整个光电子产业产生难以估量的影响。

光子集成 光波导 光调制器 微波光子学 光量子集成器件 薄膜 薄膜铌酸锂 
中国激光
2024, 51(1): 0119001
Yuanxin Tan 1,3,4Haotian Lv 1Jian Xu 2,*Aodong Zhang 2[ ... ]Ya Cheng 2,3,***
Author Affiliations
Abstract
1 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
2 XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronics Science, East China Normal University, Shanghai 200241, China
3 Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University, Shanghai 200241, China
4 Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication, we apply the simultaneous spatiotemporal focusing (SSTF) technique to a high-repetition-rate femtosecond (fs) fiber laser system. In the SSTF scheme, we propose a pulse compensation scheme for the fiber laser with a narrow spectral bandwidth by building an extra-cavity pulse stretcher. We further demonstrate truly 3D isotropic microfabrication in photosensitive glass with a tunable resolution ranging from 8 μm to 22 μm using the SSTF of fs laser pulses. Moreover, we systematically investigate the influences of pulse energy, writing speed, processing depth, and spherical aberration on the fabrication resolution. As a proof-of-concept demonstration, the SSTF scheme was further employed for the fs laser-assisted etching of complicated glass microfluidic structures with 3D uniform sizes. The developed technique can be extended to many applications such as advanced photonics, 3D biomimetic printing, micro-electromechanical systems, and lab-on-a-chips.
simultaneous spatiotemporal focusing technique pulse compensation pulse stretcher 3D isotropic fabrication chemical etching 
Opto-Electronic Advances
2023, 6(10): 230066
作者单位
摘要
光学学报
2023, 43(16): 1623000
汪旻 1,2乔玲玲 3方致伟 1,2林锦添 3[ ... ]程亚 1,3,*
作者单位
摘要
1 华东师范大学物理与电子科学学院极端光机电实验室,上海 200241
2 华东师范大学纳光电集成与先进装备教育部工程研究中心,上海 200241
3 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800
光子集成器件以极低的成本和功耗实现覆盖从光源、调制、非线性频率转换、光放大到光探测的全功能单片集成,对光电信息处理系统产生显著而深远的影响,并推动一系列诸如高速通信、人工智能、量子信息,以及精密测量等重大应用领域的持续发展。近年来,铌酸锂薄膜光子器件得益于离子揭膜技术和微纳刻蚀工艺的进步,以宽的工作窗口、低的传输损耗、大的调制带宽、高的非线性光学转换效率和兼容大规模光子集成等优点,在集成光子学领域占据重要一席之地。本文介绍了利用超快激光光刻结合化学机械抛光技术在掺杂有源发光稀土离子的铌酸锂薄膜衬底上实现片上激光与光放大的最新进展,包括在波导放大器中实现了超过20 dB的最大内部净增益,并且在高品质铌酸锂微盘中演示了具有454.7 Hz窄线宽的电光可调谐单频激光器,演示了单片集成的电驱动微环激光器,以及连续光刻方式实现的无源/有源混合集成器件。
集成光学 超快激光加工 铌酸锂 光放大器 光源 稀土掺杂材料 
光学学报
2023, 43(16): 1623014
Zhihao Zhang 1,2,3Fangbo Zhang 1,2Bo Xu 1,2Hongqiang Xie 1,4[ ... ]Zhizhan Xu 1,*
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
4 School of Science, East China University of Technology, Nanchang 330013, China
Remote or standoff detection of greenhouse gases, air pollutants, and biological agents with innovative ultrafast laser technology attracts growing interests in recent years. Hybrid femtosecond/picosecond coherent Raman spectroscopy is considered as one of the most versatile techniques due to its great advantages in terms of detection sensitivity and chemical specificity. However, the simultaneous requirement for the femtosecond pump and the picosecond probe increases the complexity of optical system. Herein, we demonstrate that air lasing naturally created inside a filament can serve as an ideal light source to probe Raman coherence excited by the femtosecond pump, producing coherent Raman signal with molecular vibrational signatures. The combination of pulse self-compression effect and air lasing action during filamentation improves Raman excitation efficiency and greatly simplifies the experimental setup. The air-lasing-assisted Raman spectroscopy was applied to quantitatively detect greenhouse gases mixed in air, and it was found that the minimum detectable concentrations of CO2 and SF6 can reach 0.1% and 0.03%, respectively. The ingenious designs, especially the optimization of pump-seed delay and the choice of perpendicular polarization, ensure a high detection sensitivity and signal stability. Moreover, it is demonstrated that this method can be used for simultaneously measuring CO2 and SF6 gases and distinguishing 12CO2 and 13CO2. The developed scheme provides a new route for high-sensitivity standoff detection and combustion diagnosis.
Ultrafast Science
2022, 2(1): 9761458
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 200240 Shanghai, China
2 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics (SIOM), CAS Center for Excellence in Ultra-Intense Laser Science, Chinese Academy of Sciences (CAS), 201800 Shanghai, China
3 Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
4 School of Physics and Electronic Science, East China Normal University, 200241 Shanghai, China
5 Department of Physics and Astronomy, College of Staten Island, the City University of New York, 10314 New York, USA
Transparency and perfect absorption are two contradictory terms; a perfect absorber never permits waves to transmit through. However, this statement only remains true in the linear regime, where the nonlinearity has been omitted and the physical system like the perfect absorber is not affected by the incoming waves. Here we experimentally demonstrate an intriguing self-induced transparency effect in a perfectly absorbing optical microcavity, which perfectly absorbs any incoming waves at the low power level, but allows a portion of waves to be transmitted at the higher power due to the nonlinear coupling between the fundamental and its second harmonic modes. Moreover, the asymmetric scattering nature of the microcavity enables a chiral and unidirectional reflection in one of the input ports, this leads to asymmetric and chiral coherent control of the perfect absorption states through phase varying. More importantly, such chiral behaviors also empower the chiral emission of second-harmonic generation with a high distinct ratio in the transparency state. These results pave the way for controllable transparency in a wide range of fields in optics, microwaves, acoustics, mechanics, and matter waves.
PhotoniX
2022, 3(1): 22
Jintian Lin 1,2†Saeed Farajollahi 3Zhiwei Fang 4Ni Yao 5,6[ ... ]Ya Cheng 1,2,4,7,9,10,11,*
Author Affiliations
Abstract
1 Chinese Academy of Sciences (CAS), Shanghai Institute of Optics and Fine Mechanics (SIOM), State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai, China
2 University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
3 University of Victoria, Department of Electrical and Computer Engineering, Victoria, British Columbia, Canada
4 East China Normal University, School of Physics and Electronic Science, XXL—The Extreme Optoelectromechanics Laboratory, Shanghai, China
5 Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, China
6 Zhejiang University, College of Optical Science and Engineering, The Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
7 East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai, China
8 Jiaxing Institute of Zhejiang University, Intelligent Optics & Photonics Research Center, Jiaxing, China
9 Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
10 Shandong Normal University, Collaborative Innovation Center of Light Manipulations and Applications, Jinan, China
11 Shanghai Research Center for Quantum Sciences, Shanghai, China
Single-frequency ultranarrow linewidth on-chip microlasers with a fast wavelength tunability play a game-changing role in a broad spectrum of applications ranging from coherent communication, light detection and ranging, to metrology and sensing. Design and fabrication of such light sources remain a challenge due to the difficulties in making a laser cavity that has an ultrahigh optical quality (Q) factor and supports only a single lasing frequency simultaneously. Here, we demonstrate a unique single-frequency ultranarrow linewidth lasing mechanism on an erbium ion-doped lithium niobate (LN) microdisk through simultaneous excitation of high-Q polygon modes at both pump and laser wavelengths. As the polygon modes are sparse within the optical gain bandwidth compared with the whispering gallery mode counterpart, while their Q factors (above 10 million) are even higher due to the significantly reduced scattering on their propagation paths, single-frequency lasing with a linewidth as narrow as 322 Hz is observed. The measured linewidth is three orders of magnitude narrower than the previous record in on-chip LN microlasers. Finally, enabled by the strong linear electro-optic effect of LN, real-time electro-optical tuning of the microlaser with a high tuning efficiency of ∼50 pm / 100 V is demonstrated.
lasers lithium niobate microcavities integrated optics 
Advanced Photonics
2022, 4(3): 036001
Renhong Gao 1,6Ni Yao 2Jianglin Guan 3,4Li Deng 3,4[ ... ]Ya Cheng 1,3,4,6,7,8,9,**
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai 201800, China
2 Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China
3 XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
4 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
5 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
6 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
7 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
8 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
9 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
We demonstrate integrated lithium niobate (LN) microring resonators with Q factors close to the intrinsic material absorption limit of LN. The microrings are fabricated on pristine LN thin-film wafers thinned from LN bulk via chemo-mechanical etching without ion slicing and ion etching. A record-high Q factor up to 108 at the wavelength of 1550 nm is achieved because of the ultra-smooth interface of the microrings and the absence of ion-induced lattice damage, indicating an ultra-low waveguide propagation loss of 0.0034 dB/cm. The ultra-high Q microrings will pave the way for integrated quantum light source, frequency comb generation, and nonlinear optical processes.
lithium niobate microcavities waveguide 
Chinese Optics Letters
2022, 20(1): 011902

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!